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Mapping the genetic landscape across  
14 psychiatric disorders

Psychiatric disorders display high levels of comorbidity and genetic overlap1,2, 
challenging current diagnostic boundaries. For disorders for which diagnostic 
separation has been most debated, such as schizophrenia and bipolar disorder3, 
genomic methods have revealed that the majority of genetic signal is shared4.  
While over a hundred pleiotropic loci have been identified by recent cross-disorder 
analyses5, the full scope of shared and disorder-specific genetic influences remains 
poorly defined. Here we addressed this gap by triangulating across a suite of cutting-
edge statistical and functional genomic analyses applied to 14 childhood- and adult-
onset psychiatric disorders (1,056,201 cases). Using genetic association data from 
common variants, we identified and characterized five underlying genomic factors 
that explained the majority of the genetic variance of the individual disorders  
(around 66% on average) and were associated with 238 pleiotropic loci. The two 
factors defined by (1) Schizophrenia and bipolar disorders (SB factor); and (2) major 
depression, PTSD and anxiety (Internalizing factor) showed high levels of polygenic 
overlap6 and local genetic correlation and very few disorder-specific loci. The genetic 
signal shared across all 14 disorders was enriched for broad biological processes  
(for example, transcriptional regulation), while more specific pathways were shared 
at the level of the individual factors. The shared genetic signal across the SB factor  
was substantially enriched in genes expressed in excitatory neurons, whereas the 
Internalizing factor was associated with oligodendrocyte biology. These observations 
may inform a more neurobiologically valid psychiatric nosology and implicate targets 
for therapeutic development designed to treat commonly occurring comorbid 
presentations.

Half of the population will meet criteria for at least one psychiatric 
disorder during their lifetime7, with many meeting criteria for multiple 
disorders1. High levels of psychiatric comorbidity complicate efforts 
to differentiate among psychiatric disorders. These challenges are 
heightened because psychiatric disorders are defined by signs and 
symptoms, as the underlying pathophysiologies remain largely unclear. 
Rapid progress in psychiatric genomics has identified hundreds of 
associated loci (genetic variants), many of which exhibit pleiotropic 
(shared) associations across disorders, and revealed high correlations 
in genetic liability across disorders8.

The present analyses represent the third major study from the Psy-
chiatric Genomics Consortium Cross-Disorder working group9 (CDG3). 
Here we examined the shared and unique influences of common genetic 
variants across 14 psychiatric disorders. Triangulating across multiple, 
complementary analytic approaches, we dissected the genetic archi-
tecture across disorders at the genome-wide, regional, functional 
and individual genetic variant levels. Our results have implications 
for refining clinical nosology and repurposing and developing novel 
treatments.

GWAS data for 14 psychiatric disorders
A summary of the datasets is provided in Extended Data Table 1. Psychi-
atric disorders were included if described in a psychiatric diagnostic 

manual10,11 and power was sufficient to interpret genetic correlations4. 
This reflects a major update relative to previous CDG1 (ref. 12) and 
CDG2 (ref. 5) analyses (average case increase of around 165% above 
CDG2; Supplementary Fig. 1), with new genome-wide association 
studies (GWASs) for all eight disorders from CDG2: attention-deficit/
hyperactivity disorder (ADHD), anorexia nervosa (AN), autism spec-
trum disorder (ASD), bipolar disorder (BIP), major depression (MD), 
obsessive–compulsive disorder (OCD), schizophrenia (SCZ) and Tou-
rette’s syndrome (TS)13–20. We added six additional disorders: alcohol-
use disorder (AUD)21, anxiety disorders (ANX)22, post-traumatic stress 
disorder (PTSD)23, nicotine dependence assessed using the Fagerström 
test for nicotine dependence (NIC)24, opioid-use disorder (OUD)25 and 
cannabis-use disorder (CUD)26. The three substance-use disorders 
(SUDs) are novel relative to a more recent cross-disorder analysis27, 
and sample size increases were significant for previously included 
disorders (average case increase of around 287%). The sample sizes, 
and therefore the power of the disorder GWAS, differed (Extended 
Data Table 1 (Neffective)).

Owing to an uneven representation of ancestral groups, the full set 
of cross-disorder analyses was restricted to GWAS summary statis-
tics from a single genetic ancestry group—European-like (EUR-like)—
defined on the basis of genetic similarity to European descent in global 
reference panels28. We also report bivariate results for MD29 and SCZ30 
in East-Asian-like (EAS-like) genetic ancestry groups and AUD31, CUD26, 
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OUD25 and PTSD23 in African-like (AFR-like) genetic ancestry groups 
similarly defined based on reference panels.

Genome-wide genetic correlations
Genetic correlations (rgs) estimated using linkage disequilibrium (LD) 
score regression (LDSC)4 revealed pervasive genetic overlap across 
disorders at the genome-wide level, with clusters of disorders dem-
onstrating particularly high genetic overlap in individuals of EUR-like 
genetic ancestry (Fig. 1; Supplementary Table 1; see Supplementary 
Figs. 2–4 for consideration of high rg across PTSD and MD). The LDSC 
estimates within AFR-like participants were not significant, due to 
limited power (Supplementary Table 4). The rg between MD and SCZ 
in EAS-like participants (rg = 0.45, s.e. = 0.09) was double that observed 
in EUR-like participants (rg = 0.22, s.e. = 0.04), which has been shown29 
to be driven by a single cohort of severe and recurrent MD32.

As the majority of analyses were restricted to participants of EUR-like 
genetic ancestry, we sought to gauge how generalizable our findings 
were across ancestral groups. We achieved this using Popcorn33, which 
can estimate rgs for the same trait across ancestral groups. We estimated 
the genetic impact correlation (ρgi), which considers different allele 
frequencies across populations by calculating the correlation between 
the population-specific, allele-variance-normalized single-nucleotide 
polymorphism (SNP) effect sizes. The results were underpowered for 
many comparisons, but included a strong EAS–EUR correlation for SCZ 
(ρgi = 0.85, s.e. = 0.04), followed by lower correlations between EAS-like 
and EUR-like for MD (ρgi = 0.67, s.e. = 0.16) and for AFR-like and EUR-like 

PTSD (ρgi = 0.59, s.e. = 0.27; Supplementary Table 4). While these results 
suggest that the findings that follow for EUR-like ancestry groups may 
generalize better for some disorders (such as SCZ) than for others (for 
example, PTSD and MD), that conclusion awaits replication in more 
highly powered analyses.

MiXeR reveals pervasive genetic overlap
Genome-wide rgs from LDSC indicate shared genetic risk across psy-
chiatric disorders. However, LDSC may underestimate the extent of 
genetic overlap if shared causal variants reflect a mixture of direction-
ally concordant and discordant associations. We applied bivariate 
causal mixture modelling (MiXeR) to quantify the degree of genome-
wide polygenic overlap reflecting the total number of shared causal 
variants regardless of magnitude or directionality6. Cross-trait analyses 
were limited to MD, SCZ, BIP, ANX, ADHD, PTSD, AUD and AN, because 
other disorders were underpowered (Methods; results for univari-
ate MiXeR are reported in Supplementary Table 5 and Extended Data 
Fig. 1). Supplementary Fig. 5 displays cross-trait MiXeR results for pair-
wise overlap across four particularly well-powered disorder samples: 
ADHD, SCZ, BIP and MD (complete results are shown in Supplementary 
Figs. 6–9 and Supplementary Table 6). There was greater polygenic 
overlap across psychiatric disorders than suggested by the rgs from 
LDSC. Overall, MiXeR results suggested that the shared genetic signal 
for psychiatric disorders primarily reflects variants with concordant 
effects across disorders, while differentiation in genetic risk is driven 
by fewer shared discordant or unique variants.

1

1

0.42 (0.03)

0.56 (0.04)

0.99 (0.05)

0.27 (0.05)
0.82 (0.03)0.82 (0.02)

0.20 (0.04)

OCDg

uOCD

0.59 (0.05)0.67 (0.06)

0.74 (0.03)0.99 (0.02)

0.47 (0.03)

0.55 (0.05)

0.32
(0.04)

0.32
(0.04)

0.55
(0.10)

<0.01
(0.03)

0.06
(0.03)

0.17
(0.04)

Compulsive
disorders

SB Neurodevelopmental
disorders

Internalizing
disorders

F1g F2g F3g F4g

0.37
(0.10)

0.21
(0.15)

F5g

SUD

Compulsive
disorders

SB Neurodevelopmental
disorders

Internalizing
disorders

SUD

0.79 (0.04) 0.89 (0.05)

0.80 (0.03) 0.69 (0.04)

0.27 (0.05)

0.20 (0.03)

0.52 (0.02)

0.44 (0.03)

0.12 (0.07)
0.60 (0.02)

0.18 (0.06)0.28 (0.03)

1

ANg

uAN

1

TSg

uTS

1

SCZg

uSCZ

1

BIPg

uBIP

1
uASD

ASDg

1
uADHD

ADHDg

1
uPTSD

PTSDg

1
uMDD

MDg

1
uANX

ANXg

1
uCUD

CUDg

1
uAUD

AUDg

1
uNIC

NICg

1
uOUD

OUDg

1

OCDg

uOCD

1

ANg

uAN

1

TSg

uTS

1

SCZg

uSCZ

1

BIPg

uBIP

1
uASD

ASDg

1
uADHD

ADHDg

1

uPTSD

PTSDg

1

uMDD

MDg

1

uANX

ANXg

1

uCUD

CUDg

1

uAUD

AUDg

1

uNIC

NICg

1

uOUD

OUDg

<0.01
(0.11)

1 1 1 1

0.87
(0.11)

0.49 (0.05)

0.97 (0.02)

0.610.100.630.650.75

0.56 0.99 0.30
0.82 0.82

0.630.57 0.750.99

0.97

0.87 0.32 0.32 0.67 0.31 <0.01 0.06 0.17

F1g F2g F3g F4g

0.390.39 0.53 0.22

F5g

0.78 0.88
0.78 0.69

0.36

0.68 <0.01

1
pg

1uF1 1uF2
1uF3

1uF4 1uF5

0.50 0.59 0.61 0.95 0.63

0.130.27

a b

c

F2 F3 F4 F5

Inter-Factor rg  from
 b

LD
S

C
 r

g 
ac

ro
ss

 1
4 

d
is

or
d

er
s

0.68
(0.06)

0.35
(0.06)

0.53
(0.14)

0.36
(0.06)

F1

F4

F5

ANAN

OCD

TS

OCD

F1

TS

SCZSCZ

BIPBIP

ASDASD

ADHDADHD

PTSDPTSD

MDMD

ANXANX

CUDCUD

AUD

OUD

NIC

–0.25 0.25 0.75 1.000.50

rg

0

AUD

OUD

NIC

F2

F3

* * * *

***

* *

*

*

*

* *

* * *

* * *

* * * * *

* * * * * * *

* * * * * * * *

* * * * * * * * *

* * * * * *

* * * * * * * * *

* * * * * * * * *

* * * * * * * * *

Fig. 1 | Genome-wide structural models. a, Heatmap of rgs across the 14 
disorders as estimated using LDSC on the lower diagonal and the correlations 
among the psychiatric factors as estimated using GenomicSEM above the 
diagonal. Two-sided P values were derived from the Z-statistics, calculated as 
the point estimate of the rg divided by its s.e. Cells depicted with an asterisk 
reflect values that were significant at a Bonferroni-corrected threshold for 
multiple comparisons. Exact values are reported in Supplementary Table 1. 
Disorders that load on the same factor are shown in the same colour. Per the 
legend at the bottom of the panel, darker blue shading indicates larger, positive 
rgs. LDSC estimates were used as the input to genomic SEM to produce the 
results in b and c. b, Estimates from the five-factor model along with standard 

errors in parentheses. Estimates are standardized relative to SNP-based 
heritabilities, where this is equal to the sum of the squared factor loading  
(the single-headed arrow(s) from the factor to the disorder) and the residual 
variance (the values on the double-headed arrows on the single-colour 
circles with text labels that begin with u). Disorders are shown as pie charts; the 
proportion of residual variance is shaded in purple and the variance explained 
by the psychiatric factors is shaded in the colour of the corresponding factor.  
c, Standardized estimates from the p-factor model. The disorders are colour 
coded as in b, and the first-order factors (F1–F5) are also colour coded to show 
variance explained by the second-order p-factor in yellow.



408  |  Nature  |  Vol 649  |  8 January 2026

Article

Genomic SEM identifies five factors
We used genomic structural equation modelling (genomic SEM)27,34 in 
the EUR-like genetic ancestry datasets to model genetic overlap from 
LDSC across 14 disorders as latent factors representing dimensions of 
shared genetic risk (Methods). A five-factor model (Supplementary 
Tables 2 and 3) provided the best fit to the data (comparative fix index 
(CFI) = 0.971, standard root mean square residual (SRMR) = 0.063). 
These five latent genomic factors (capitalized throughout, to distin-
guish them from the psychiatric disorders that define them) (Fig. 1) 
comprised: F1, a Compulsive disorders factor defined by AN, OCD and, 
more weakly, TS and ANX; F2, a SB factor defined by SCZ and BIP; F3, a 
Neurodevelopmental factor defined by ASD, ADHD and, more weakly, 
TS; F4, an Internalizing disorders factor defined by PTSD, MD and ANX; 
and F5, a SUD factor defined by OUD, CUD, AUD, NIC and, to a lesser 
extent, ADHD.

Within this five-factor model, Internalizing disorders and SUD factors 
displayed the highest interfactor correlation (rg = 0.60; s.e. = 0.02). The 
median residual genetic variance unexplained by the latent factors 
was 33.5%, indicating that most genetic risk was shared among disor-
der subsets. TS displayed the most unique genetic signal, with 87% of 
its genetic variance unexplained by the factors. The structure of the 
first four factors was similar to that found by genomic SEM applied to 
subsets of these disorders in previous work5,27, indicating stability in 
the underlying factor structure, even as sample sizes and the number 
of disorders have increased. The newly added SUD traits formed the 
fifth factor.

Evidence of moderate rg between factors suggests that a higher-order 
factor may explain common variance across the correlated factors. 
Consistent with this observation, a hierarchical model also fit the data 
well (CFI = 0.959, SRMR = 0.074). We refer to this as the p-factor model, 
which included a higher-order general psychopathology factor defined 
by the five lower-order psychiatric factors (such as SUD). Internalizing 
loaded most strongly on p (0.95), with the other 4 factors having mod-
erate loadings (0.50–0.63).

As some of the underlying data were obtained using brief, 
self-reported diagnoses, we performed a sensitivity analysis in which 
those data were excluded (Supplementary Note 1, Supplementary 
Tables 7–11 and Supplementary Figs. 10–18). The rg matrix was largely 
unchanged; the five-factor model identified in the full sample contin-
ued to provide good fit to the data and produced similar point esti-
mates, and downstream GWAS analyses (detailed below) identified 
similar loci.

Genetic correlations with factors
We estimated rgs between the five correlated factors, hierarchical 
p-factor and 31 complex traits (Supplementary Table 12) to place shared 
genetic liability indexed by the factors in a broader clinical context. 
These factors vary in their use for capturing shared genetic signal; 
accordingly, we used the QTrait heterogeneity statistic to assess this 
use at the genome-wide level. When QTrait is significant, this indicates 
a trait’s rg deviates from the factor structure. For example, if trait X is 
negatively correlated with SCZ but unrelated to BIP, QTrait would prob-
ably be significant, suggesting that trait X lies outside the shared sig-
nal captured by the factor. Significant correlations were defined at a 
Bonferroni-corrected threshold of P < 2.68 × 10−4, while not significant 
for QTrait at this same threshold. This QTrait exclusion criteria was relaxed 
for the p-factor if that trait was significantly associated with the majority 
(≥3) of the five correlated factors, as this indicates the trait is capturing 
transdiagnostic associations the p-factor is intended to index.

The Internalizing disorders and SUD factors were the only factors 
associated with household income (rg_Internalizing = −0.40, s.e. = 0.02; 
rg_SUD = −0.41, s.e. = 0.03; Fig. 2) and were the most pervasively associ-
ated with different cognitive outcomes, including childhood intel-
ligence (rg_Internalizing = −0.27, s.e. = 0.05; rg_SUD = −0.40, s.e. = 0.07). Only 

the SUD factor was associated with adult intelligence (rg_SUD = −0.40, 
s.e. = 0.03) and verbal numerical reasoning (rg_SUD = −0.41, s.e. = 0.03). 
This was compared to more circumscribed cognitive associations for 
the Compulsive disorders and SB factors, including a large negative 
correlation with the pairs matching test (potentially indexing memory; 
rg_Compulsive = −0.33, s.e. = 0.03; rg_SB = −0.34, s.e. = 0.03). The SB and SUD 
factors were the only ones associated with risk tolerance (rg_SB = 0.31, 
s.e. = 0.03; rg_SUD = 0.38, s.e. = 0.03). The Neurodevelopmental factor 
was uniquely associated with childhood BMI (rg_Neurodevelopmental = 0.26, 
s.e. = 0.06) and showed high genetic overlap with childhood aggres-
sion (rg_Neurodevelopmental = 0.94, s.e. = 0.10). As would be expected, the five 
traits significantly associated with all five correlated factors were also 
among the top correlations for the p-factor, reflecting stress sensitivity 
(rg_p = 0.50, s.e. = 0.02), loneliness (rg_p = 0.62, s.e. = 0.02), neuroticism 
(rg_p = 0.64, s.e. = 0.02), self-harm (rg_p = 0.74, s.e. = 0.04) and suicide 
attempts (rg_p = 0.87, s.e. = 0.03). The full set of correlations is shown 
in Supplementary Table 13; comparison across factors is shown in 
Extended Data Fig. 2; and comparison across traits within each factor 
is shown in Extended Data Fig. 3.

LAVA finds regional hotspots of overlap
Global estimates of pleiotropy, such as the genome-wide rgs from 
LDSC, provide an average of the degree of shared signal across the 
genome. However, as genetic overlap is unlikely to be constant across 
genomic regions, we segmented the genome into 1,093 LD-independ-
ent regions, and applied local analysis of (co)variant association 
(LAVA35; Methods) to assess the rg between disorders within these 
regions. In addition to capturing heterogeneity in genetic overlap and 
pinpointing relevant regions, LAVA identifies potential rg hotspots 
shared among several disorders, thereby providing further insight 
into genetic architecture.

We restricted analyses to loci with sufficient SNP-based heritabi
lity for the disorders analysed (P < 4.6 × 10−5 = 0.05/1,093; Methods). 
Correcting for the number of bivariate tests performed across all 
regions and disorder pairs, we detected 458 significant pairwise local 
rgs (P < 2.1 × 10−6 = 0.05/24,273). The pairs of disorders with the greatest 
number of local rg hits were MD and ANX (113 regions), MD and PTSD 
(88 regions), and BIP and SCZ (40 regions), accounting for over half 
of all significant local rgs detected (Fig. 3a). This is consistent with the 
genome-wide levels of overlap indicated through the LDSC global rg 
(Fig. 1), the polygenic overlap estimated with MiXeR (Supplementary 
Figs. 5–9), and the multivariate genetic structure identified by genomic 
SEM. Both global and local rgs tended to be positive, with significant 
negative rgs identified in only three instances (Supplementary Fig. 19). 
This indicates that the genetic risk for one disorder typically increases 
the risk for another (Supplementary Fig. 20).

We detected 101 regions that contained significant local rgs between 
several disorder pairs, which we call rg hotspots (see Supplementary 
Tables 14–23 for local rgs across disorders in the top 10 hotspots). The 
most pleiotropic of these hotspots was on chromosome 11, which con-
tained 17 positive and significant local rgs involving 8 of the 14 analysed 
disorders (Fig. 3b). This region also stands out as the most significantly 
associated with 8 of these 17 disorder pairs, while ranking in the top 
25% of associated loci for 12 of them (Supplementary Fig. 21). Notably, 
this region contains the NCAM1–TTC12–ANKK1–DRD2 gene cluster 
that has been frequently associated with psychiatric phenotypes36–39, 
and flagged as a likely pleiotropy hotspot for a range of cognitive and 
behavioural outcomes related to, for example, intelligence, personality, 
substance use and sleep35,40–42.

Risk loci for psychiatric factors
We used multivariate GWAS within genomic SEM34 to identify SNPs 
associated with the factors from the five-factor model or the p-factor 
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in the hierarchical model. Similar to the QTrait metric, we estimated 
factor-specific QSNP heterogeneity statistics. This indexes SNPs that devi-
ate strongly from the factor structure, due to either disorder-specific 
or directionally discordant effects. We defined genomic hits for the 
factors as those that were significant after Bonferroni correction 
(P < 5 × 10−8/6 genomic factors) and did not overlap with QSNP hits for 
that factor (Methods). Most hits were identified for the SB (n = 102) and 
Internalizing (n = 150) factors. After merging overlapping loci across the 
five correlated factors, 238 unique hits remained, including 27 broadly 
pleiotropic loci associated with two or more factors. The hierarchical 
model identified 160 hits for the p-factor (Fig. 4, Supplementary Fig. 22 
and Supplementary Tables 24–36), 57 of which were not identified in 
the five-factor model (295 unique hits across both models). Forty-eight 

hits were novel relative to the univariate GWAS, of which 38 have been 
described in previous GWAS for a broad range of outcomes, and 10 are 
entirely novel (Supplementary Table 37).

We identified 33 unique hits with significant QSNP effects across the 
factors from the five-factor model. By comparison, we identified 117 
QSNP hits from the p-factor model that showed significantly divergent 
effects across the five, lower-order psychiatric factors (Supplementary 
Table 36). These p-factor QSNP hits also included the chromosome 11 
LAVA hotspot, where this region was found not to confer transdiag-
nostic risk due to an absence of signal for the Neurodevelopmental 
factor. For the SUD factor, highly significant QSNP hits were driven by 
variants in the genes involved in biological pathways specific to par-
ticular psychoactive substances, including the alcohol dehydrogenase 
genes (ADH1A, ADH1B and ADH1C) for AUD and the CHRNA3–CHRNA5–
CHRNB4 nicotinic receptor subunit gene cluster for NIC. More QSNP 
loci for the p-factor model relative to the five-factor model indicates 
that many shared genetic relationships are better captured by the five 
factors (Supplementary Figs. 23 and 24).

A phenome-wide association study conducted in the Mayo Clinic 
Biobank revealed that factor hits were associated with multiple psychi-
atric disorders, especially those that loaded on the factor (Supplemen-
tary Table 38 and Supplementary Fig. 25). The Internalizing disorders 
(Supplementary Fig. 25d) and p-factor (Supplementary Fig. 25f) loci 
were also associated with a range of medical outcomes (for example, 
chronic pain and hypertension).

Divergent loci across disorders
In more fine-grained analyses of disorder pairs, case–case GWAS (CC-
GWAS)43 was used to identify loci with different allele frequencies 
across cases of different disorders. Such loci may reflect distinctive 
genetic effects across disorder pairs. CC-GWAS was applied to 75 dis-
order pairs, comparing 13 disorders. NIC was excluded because it is a 
continuous trait, and the pairs ANX–MD, ANX–PTSD and MD–PTSD 
were excluded because all had an rg estimate of >0.8, thereby risking 
an inflated type I error rate (Methods). The genome-wide significance 
threshold was defined at 5.5 × 10−10 (that is, 5 × 10−8/91 pairwise com-
parisons). An overview of CC-GWAS input parameters is provided in 
Supplementary Table 39.

In total, 412 loci showed significantly different effects across the 
75 disorder pairs (Supplementary Tables 40 and 41); most (294 out of 
412) were in comparisons that included SCZ, possibly reflecting either 
greater power for the SCZ GWAS or more distinctive biology for this 
disorder. Owing to overlap among the hits, the 412 loci comprised 109 
LD-independent loci (Supplementary Table 42). Five of these were 
CC-GWAS specific, implying that they were not significantly associated 
with case–control status in either of the disorders in the respective 
disorder pair. CC-GWAS also computes a genome-wide genetic distance 
between the cases of two disorders (FST,causal), indicating how genetically 
dissimilar the cases are on average. As expected, these genetic distances 
were inversely correlated (r = −0.79, s.e. = 0.07) with rg (Supplementary 
Table 43). In support of the five-factor model, >99% of the CC-GWAS 
hits were identified for disorder pairs that loaded on separate factors 
(Supplementary Tables 44 and 45). Disorders that cluster on the same 
factor from the five-factor model are, apparently, largely indistinguish-
able at the level of individual genetic variants.

Functional annotation
Enrichment analyses
To understand biological functions influenced by the risk loci, we pri-
oritized candidate risk genes implicated by the multivariate GWAS 
loci using expression quantitative trait loci (eQTL)44,45 and Hi-C44,46 
datasets collected from fetal and adult brain samples (Methods and 
Supplementary Tables 46 and 47). Owing to the limited number of 
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(n̂ = 1,637,337), SUD (n̂ = 313,395) and p-factor (n̂ = 2,168,621). Sample sizes for  
the external traits are reported in Supplementary Table 12 and exact P values are 
reported in Supplementary Table 13.
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variants associated with other factors, analyses were restricted to 
the p-factor, the SB and Internalizing disorders factors and QSNP for 
these latter two factors. We first compared the target gene expression 
along the temporal trajectory of human brain development, finding 
that genes associated with the three factors were expressed at higher 
levels than QSNP target genes across the lifespan, with the largest differ-
ence observed at fetal stages and early life (Fig. 5 and Supplementary 
Fig. 26). This suggests that pleiotropic variants are involved in early, 
fundamental neurodevelopmental processes. We next examined bio-
logical processes using Gene Ontology (GO) enrichment analysis47. 
The target genes of the p-factor were primarily enriched in broader 
biological processes related to gene regulation (Fig. 5). To enhance the 
specificity of the gene sets, we removed Internalizing disorders and SB 
target genes that also appeared for the p-factor. SB (minus p-factor) 
target genes were enriched in more specific terms related to neuron 
development. No significant results were identified for the Internalizing 
disorders factor, probably reflecting the large proportion of target 
genes overlapping with the p-factor. Results from MAGMA48 (Supple-
mentary Methods) provided convergent support for the role of early 
neurodevelopmental processes in transdiagnostic psychiatric risk. 
Specifically, genetic signal for the five correlated factors and p-factor 
showed enrichment in genes identified from rare variant studies of 
ASD49–51, neurodevelopmental delay49 or both (Supplementary Fig. 27).

Averaged results across expression-weighted cell type enrich-
ment (EWCE)52 and MAGMA were used to evaluate enrichment within 
neuronal cell types in fetal and adult single-cell datasets53–57 (Sup-
plementary Tables 48 and 49). Genes associated with the SB factor 
were significantly enriched in fetal data in interneurons and seven 
excitatory neuron subtypes, the strongest of which was for excitatory 
maturing neurons53,54 (Fig. 5). The SB factor was also uniquely enriched 
for deep-layer excitatory neurons in the adult brain57. Internalizing 
disorder genes were enriched within four excitatory neuron subtypes 
in fetal data53, although the signal was not as strong or pervasive as 
for the SB factor. In adult data, the Internalizing factor was enriched 
for medial ganglionic eminence (MGE) interneurons56 and different 
glial cells, specifically oligodendrocytes and Bergmann glia56,57. The 
p-factor was enriched for five excitatory neuron subtypes in fetal data 
and oligodendrocyte precursor cells in adult data56. A significant pro-
portion of these genes is expressed during both fetal and adult stages; 
cell type enrichment was largely driven by genes that are not expressed 
in a particular developmental stage (Supplementary Fig. 28). We also 
tested enrichment for loci specific to MD and SCZ identified from 
CC-GWAS. MD-specific signal was enriched for cycling and interme-
diate progenitors in fetal brain. SCZ-specific signal was enriched for 
endothelial, vascular and upper rhombic lip cells in adult brain (Sup-
plementary Fig. 28).
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Fig. 3 | Local genetic correlations. a, An overview of the average patterns of 
local rgs across the genome for all pairs of disorders, shown as a heatmap (below 
diagonal) and a network plot (above diagonal). The colours of the heatmap 
represent the average local rgs across all evaluated loci, with darker red and blue 
shading indicating more negative and positive rg, respectively; the dot size 
reflects the strengths of average associations; and the numbers indicate how 
many of the local rgs were significant. These results are mirrored in the network 
plot, where the width or the edges reflect the number of significant associations, 
meaning that only disorders with at least one significant local rg are connected, 
and the edge opacity reflects the strength of the average local rg across tested 
loci. Note that label colours are concordant with the genomic SEM factor 

structure from Fig. 1 and, as shown, disorders of similar colours also tend to be 
proximally located within the network. b, The local rg structure within the top  
rg hotspot on chromosome (chr.) 11 (112755447–114742317, GRCh37 reference 
genome), that is, the region where the greatest number of significant rgs were 
found across all disorder pairs. Here, the network plot illustrates all significant 
rgs detected in this region, with both edge width and opacity reflecting the 
strength of the association. The region plot in the middle displays the genes 
contained within the hotspot, and the table below shows the rg estimates (Rho), 
95% confidence intervals (CIlower, CIupper), variance explained (R2) and P values for 
all significant pairwise local rgs in this region. Label colours are again concordant 
with those used for the genomic SEM factor structure in Fig. 1.
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Stratified genomic SEM
We used stratified genomic SEM27, a multivariate corollary of partitioned 
LDSC58, to characterize the functional signals captured by the psychiat-
ric factors in the five-factor and p-factor models, estimating enrichment 
for 162 functional annotations that passed quality control (Methods 
and Supplementary Table 50). Enrichment of the factor variances in 
the five-factor or p-factor models reflects groups of genetic variants 
that index a disproportionate concentration of genetic risk sharing. For 
the p-factor model, we also examined the enrichment of the residual 
(unique) variances of the five lower-order factors. Annotations signifi-
cant for a factor in the p-factor model are therefore likely to capture 
signal specific to that factor. Enrichment was also calculated for a recent 
GWAS of height59 to evaluate the specificity of the psychiatric findings. 
We used a Bonferroni-corrected significance threshold of P < 2.81 × 10−5 
(Methods). We focus here on results for the better-powered SB, Inter-
nalizing and p-factor, and do not discuss annotations that lacked psy-
chiatric specificity, as indicated by significant enrichment for height 
(for example, evolutionarily conserved annotations).

We identified 34 annotations that were significant for the SB fac-
tor in both models and are thereby likely to be specific to the neu-
robiology of the SB factor. This included the intersection between 
protein-truncating-variant-intolerant (PI) genes and several neuronal 
subtypes, including excitatory CA1 and CA3 hippocampal neurons 
(Extended Data Fig. 4 and Supplementary Table 50). In total, 51 sig-
nificant annotations were identified for the Internalizing disorders 

factor, including PI-oligodendrocyte precursor annotations. We also 
found strong enrichment for an annotation reflecting neural progeni-
tor biology60, further implicating early neurobiological processes in 
shared psychiatric risk. No annotations remained significant for the 
Internalizing disorders factor’s residual variance (that is, independ-
ent of the p-factor), as would be expected given that only 10% of the 
genetic variance in the Internalizing disorders factor was separate from 
p. Finally, 64 significant annotations were detected for the p-factor, 
the strongest of which were fetal male brain H3K4me1 histone mark 
and PI-GABAergic neuron annotations.

Discussion
Our analyses characterized the landscape of shared and divergent 
genetic influences of common variants on 14 psychiatric disorders. 
At the genome-wide level, we confirmed pervasive genetic overlap 
across 14 clinically distinguished psychiatric disorders, as indicated by 
large pairwise rg within the EUR-like genetic ancestry group and even 
greater overlap when including loci that are shared, but have divergent 
directional effects. This overlap was parsimoniously captured by five 
genomic factors (Compulsive, SB, Neurodevelopmental, Internalizing 
and SUD), which explained the majority of the genetic variance of the 
individual disorders. We identified 101 regions with correlated effects, 
including a hotspot on chromosome 11 with associations for 8 disor-
ders. We found that broadly pleiotropic variants are primarily involved 
in early neurobiological processes, while also identifying different 
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Fig. 4 | Locus-level results. a, Heatmap of CC-GWAS loci below the diagonal 
across pairwise combinations of disorders; the darker orange shading indicates 
a higher number of CC-GWAS hits. CC-GWAS results are not shown for the 
Internalizing disorders as their rgs were too high, or for nicotine dependence as 
this is a continuously measured trait. Genomic SEM results (number of hits and 
mean χ2 for each factor and factor-specific QSNP estimate) are reported above 
the diagonal. Results for the p-factor are shown above the plot along with a Venn 
diagram of the overlap between p-factor, p-factor QSNP and overall CC-GWAS hits. 
The disorders are ordered and coloured according to the genomic SEM factor 
structure from Fig. 1. b,c, The Miami and QQ-plots for the p-factor (b) and SBs 
factors (c), respectively. These panels show the results for the −log10-transformed 

two-tailed P values for the factor on the top half of the Miami plot and the 
log10-transformed one-tailed P values for QSNP on the bottom half. Factor hits 
that were within 100 kb of univariate hits are shown as black triangles, novel 
hits for the factors that were not within 100 kb of a univariate or QSNP hit are 
shown as red triangles and QSNP hits are shown as purple diamonds. d, The 
two-tailed −log10[P] in a Manhattan plot for the CC-GWAS comparison across  
MD and SCZ, which produced the most hits (orange diamonds), as well as the 
scatterplot of standardized case–control effect sizes of MD (x axis) versus SCZ 
( y axis), with CC-GWAS significant SNPs labelled in red. For b–d, the grey 
dashed lines indicate the significance threshold, which was defined using 
Bonferroni correction for multiple comparisons.
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Fig. 5 | Functional annotation of factor variants. a, GO enrichment analysis  
of predicted target genes with transdiagnostic associations (that is, variants 
associated with the p-factor), or those target genes associated with the SB 
factor that were not overlapping with p-factor target genes. Depicted −log10-
transformed P values are one-sided, calculated using a χ2 test; false-discovery 
rate (FDR) correction was applied for multiple comparisons. b, The averaged 
and normalized expression levels of target genes of the indicated classes along 
the temporal trajectory of human brain development. Shading around the lines 
reflects 95% CIs. pcw10, post-conception week 10. c,d, Average log10[P] values 
across EWCE and MAGMA enrichment for genes associated with the indicated 
factors in fetal brain cell types using two independent single-cell RNA-sequencing 
(scRNA-seq) datasets53,54 (c) or adult brain cell types using three independent 

single-nucleus RNA-seq (snRNA-seq) datasets55–57 (d). The P values from EWCE  
and MAGMA were two-sided and each had an FDR correction applied for multiple 
comparisons before averaging the two sets of results. EWCE P values were 
empirically derived using a permutation test; MAGMA P values were calculated 
using an F-test. Int, Internalizing disorders factor. The implied sample size  
for the three depicted psychiatric factors was: SB (n̂ = 127,202), Internalizing 
(n̂ = 1,637,337) and p-factor (n̂ = 2,168,621). CycProg, cycling progenitor;  
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cell; RG, radial glia; Astro, astrocyte; MSN, medium spiny neuron; ODC/Oligo, 
oligodendrocyte.
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brain cell types that uniquely confer risk to more circumscribed sub-
sets of disorders. At the individual-variant level, we identified 238 loci 
associated with at least one of the five correlated psychiatric factors, 
along with 412 loci that distinguished disorders that primarily belong 
to different factors.

The SB (defined by SCZ and BIP) and Internalizing disorders (defined 
by major depression, PTSD and anxiety) factors offered a particularly 
useful way to understand shared risk across sets of disorders. For these 
factors, a diverse set of methods produced convergent results across 
genome-wide, regional and locus-level results, indicating that the dis-
orders within these factors are characterized by overlapping genetic 
signal. A replicated finding across functional methods reflected enrich-
ment for the SB factor in excitatory neuron annotations, including 
CA1 and CA3 hippocampal neurons, deep-layer neurons from adult 
data, and maturing, migrating, prefrontal and visual cortex excitatory 
neurons in fetal data. The Internalizing factor also showed enrichment 
in excitatory neurons, but was more consistently enriched in different 
glial cells in adult data, including oligodendrocytes and their precursor 
cells and Bergmann glia.

At the genome-wide level, the p-factor was strongly related to the 
Internalizing disorders factor and evinced the largest rgs with external 
traits reflecting broad clinical characteristics, such as neuroticism, 
stress sensitivity and loneliness. These results are consistent with con-
ceptualizations of the p-factor as reflecting a general tendency towards 
negative emotionality61. In support of the p-factor, LAVA identified 
pleiotropic hotspots characterized by widespread local rg across dis-
orders and multivariate GWAS yielded 160 hits for this factor alone. 
However, the p-factor also had more hits for the QSNP heterogeneity 
metric (117) than all five-factors from the correlated factors model (33), 
indicating that the p-factor alone is insufficient for explaining cross-
disorder risk. The p-factor was largely enriched for broad biological 
categories, such as gene regulation. These results suggest a conceptual 
model in which there is a partial, broadly transdiagnostic component 
of genetic vulnerability to psychiatric disorders that primarily captures 
Internalizing genetic signals, with subsequent levels of more canalized 
and neurobiologically meaningful subdomains of psychopathology 
captured by the five factors.

Our study has several limitations. Analyses were restricted primarily 
to EUR-like genetic ancestry populations due to the limited availability 
of GWAS data for other groups and the limitations of methods requiring 
more genetically homogeneous groups62. The sample sizes for GWASs 
of non-EUR-like populations are still orders of magnitude smaller and 
not currently powered for more precise cross-ancestry assessments; 
this emphasizes the need for future research including the genera-
tion of additional ancestrally representative data, which will enable 
well-powered studies and the examination of cross-disorder genetic 
architecture across regional and cultural differences. Cross-ancestry 
rgs should be interpreted in light of findings that show considerably 
smaller within-disorder, within-ancestry rgs across cohorts for PTSD 
(rg = 0.73, s.e. = 0.21)63 and MD (rg = 0.76, s.e. = 0.03)64 relative to SCZ 
(rg = 0.95, s.e. = 0.03)65. This suggests that cross-ancestry rgs for PTSD 
and MD could drop below 1 for reasons independent of ancestry-
specific signal, such as environmental moderation of genetic effects 
or increased phenotypic heterogeneity. Another limitation reflects 
potential inflation in rg estimates by cross-trait assortative mating66, 
diagnostic misclassification67 or the use of super-normal controls68. 
However, the high genetic overlap observed among subclusters of psy-
chiatric disorders is unlikely to be explained by cross-trait assortment 
alone69 and current sensitivity analyses using stricter case definitions 
suggested that impact of diagnostic misclassification was modest. Wide 
ranges in sample sizes across the univariate psychiatric GWAS used 
as input should also be considered when evaluating relative levels of 
significant findings, particularly for locus discovery.

The current investigation into the genetic structure of psychopathol-
ogy reflects a comprehensive genomic examination of cross-disorder 

psychiatric risk. It extends previous cross-disorder psychiatric genetics 
analyses5,27 using updated datasets, new disorders and triangulation 
across different methodological approaches to produce a robust set 
of findings70. We identified subsets of disorders with particularly high 
genetic overlap and characterized the biological processes implicated 
by their shared risk. This evidence should contribute substantially to 
the ongoing debates regarding diagnostic boundaries between disor-
ders such as BIP and SCZ. Certain pharmacological interventions have 
proven to be effective across a range of disorders (for example, selec-
tive serotonin reuptake inhibitors)71, indicating that future work could 
build on our findings to identify new or repurposed therapeutics that 
target the shared signal captured by the factors. While much remains 
to be done, cross-disorder genetics continues to fill in critical gaps in 
our understanding of shared and unique psychiatric risk factors with 
implications for the future of psychiatric research, therapeutics and 
nosology.
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Methods

Quality control of summary statistics
A standard set of quality-control filters was applied to all univariate 
GWAS summary statistics before conducting cross-disorder analyses. 
Any additional quality-control filters applied by a method are noted in 
its corresponding section below. These quality-control filters included 
removing strand ambiguous SNPs, restricting to SNPs with an imputa-
tion score (INFO) > 0.6 and with a minor allele frequency > 1% when 
this information was available in the GWAS data. We also restricted 
analyses to SNPs with an SNP-specific sum of the effective sample that is 
>50% of the total sum of the effective sample or, when this SNP-specific 
information was not available, to SNPs for which >50% of the cohorts 
contributed information, as indexed by the direction column in the 
GWAS summary statistics. The MHC region was excluded from all sum-
mary statistics before the analysis. Base pair location is given in genome 
build GRCh37/hg19 throughout the Article and its Supplementary 
Information.

Genomic SEM
Genome-wide models. All GWAS summary statistics were run through 
the munge function before running the multivariable version of LDSC 
used as input to genomic SEM7. The munge function aligns GWAS  
effects to the same reference allele and restricts to HapMap3 SNPs 
and SNPs with INFO > 0.9. LDSC was estimated using these munged 
summary statistics, applying a liability threshold model for all case–
control psychiatric disorders (that is, all disorders except for the NIC 
outcome, which reflects a GWAS of the continuous Fagerström test for 
nicotine dependence24). For comparability, population prevalence was 
chosen to match what was used in the corresponding manuscript that 
introduced the GWAS of each trait. The ascertainment correction was 
performed using the sum of effective sample sizes across contribut-
ing cohorts for each disorder72. We note that, for CUD26, we used the 
recently described formula72 for estimating the sum of effective sample 
size directly from the GWAS data. This is because, in this instance, we 
found that the implied sum of effective sample size was much smaller 
than the value computed from the reported sample sizes, which is 
probably attributable to the complex familial structure in the included 
deCODE sample.

The two primary estimates from multivariable LDSC are the genetic 
covariance matrix and the corresponding sampling covariance matrix. 
The genetic covariance matrix contains SNP-based heritabilities on the 
diagonal and the co-heritabilities (genetic covariances) across every 
pairwise combination of included disorders on the off-diagonal. The 
sampling covariance matrix contains squared standard errors (sam-
pling variances) on the diagonal, which allows genomic SEM to appro-
priately account for differences in the precision of GWAS estimates for 
disorders with unequal power. The off-diagonal contains sampling 
dependencies, which will arise in the presence of sample overlap across 
GWAS phenotypes. As these sampling dependencies are estimated 
directly from the data, summary statistics can be included with vary-
ing and unknown levels of sample overlap. We note that study overlap 
between disorders is not expected to affect the findings, as study over-
lap affects only the covariance of error terms of the GWASs resulting in 
increased intercepts of cross-trait LDSC with no expected impact on the 
estimates of rg

4,43. To guard against model overfitting, an exploratory 
factor analysis (EFA) was performed on even chromosomes and used 
to inform the fitting of an confirmatory factor analysis (CFA) in odd 
chromosomes. The EFA was performed using the factanal R package for 
2–5 factors using both promax (correlated) and varimax (orthogonal) 
rotations. Disorders were specified to load on a factor in the CFA when 
the standardized EFA loadings were >0.3, with disorders allowed to 
cross-load (for example, TS on the Compulsive and Neurodevelopmen-
tal factors) if this was the case for multiple factors. Models specified 
based on varimax EFA results still allowed for interfactor correlations, 

as allowing only subsets of disorders to load on each factor will induce 
genetic overlap. A common-factor model was also modelled to test 
a single-latent-factor model predicting all 14 disorders. We did not 
evaluate models with more than five factors as these caused issues with 
model convergence. Results revealed that a five-factor model specified 
based on the promax EFA results (Supplementary Table 3) fit the data 
best in odd chromosomes (CFI = 0.973, SRMR = 0.073; Supplementary 
Table 2). This model also fit the data well in all autosomes, and was 
subsequently carried forward for all analyses, along with the p-factor 
model described in the main text. Considering the high rg across PTSD 
and MD, we also evaluated a model (in odd autosomes) that estimated 
the residual genetic covariance across these two disorders; however, 
we found that this did not significantly improve model fit (model χ2

1 
difference = 2.86, P = 0.094).

Stratified genomic SEM. Stratified genomic SEM proceeds in two 
stages27. In stage 1, the s_ldsc function in genomic SEM, a multivariable 
implementation of stratified LDSC (S-LDSC)58, was used to estimate 
the stratified genetic covariance and sampling covariance matrices 
within each functional annotation. We specifically used the zero-order 
estimates for these analyses. In stage 2, the enrich function was used to 
estimate the enrichment of the factor variances and residual genetic 
variances unique to the indicators. This is achieved by first estimating 
the model in the genome-wide annotation including all SNPs. The fac-
tor loadings from these genome-wide estimates are then fixed and the 
(residual) variances of the factors and disorders are freely estimated 
within each annotation. These reflect the within-annotation estimates 
for each variance component that are scaled to be comparable to the 
genome-wide estimates. This cumulative set of results is used to cal-
culate the enrichment ratio of ratios. The numerator reflects the ratio 
of the estimate of the factor variance within an annotation over the 
genome-wide estimate. The denominator is the ratio of SNPs in the 
annotation over the total number of SNPs examined. Enrichment es-
timates greater than the null of 1 are therefore observed when an an-
notation explains a disproportionate level of genetic variance relative 
to the annotation’s size.

Functional annotations used to estimate the stratified matrices were 
obtained from a variety of data resources. This included: (1) the baseline 
annotations from the 1000 Genomes Phase 3 BaslineLD (v.2.2)73 from 
the S-LDSC developers58; (2) tissue-specific gene expression annotation 
files created using data from GTEx74 and DEPICT75; (3) tissue-specific 
histone marks from the Roadmap Epigenetics project76; (4) annota-
tions that we created27 from data in GTEx74 and the Genome Aggregate 
Database (gnomAD)77 that index protein-truncating-variant-intolerant 
(PI) genes, genes expressed in different types of brain cells in the human 
hippocampus and prefrontal cortex, and their intersection; (5) 11 neu-
ronal cell type annotations defined by peaks from single-cell assay for 
transposase accessibility by sequencing (scATAC–seq) in the human 
forebrain54; (6) an annotation defined by peaks from ATAC–seq data 
with greater accessibility in neural progenitor enriched regions encom-
passing the ventricular, subventricular and intermediate zones (GZ) 
over neuron-enriched regions within the subplate, marginal zone and 
cortical plate (CP; GZ > CP), and a second CP > GZ annotation reflecting 
the converse60; and (7) a fetal and an adult annotations defined by eQTLs 
identified using high-throughput RNA-seq45. We excluded 22 annota-
tions that produced stratified genetic covariance matrices that were 
highly non-positive definite to examine a total of 162 annotations. We 
corrected for multiple testing by using a strict Bonferroni correction 
for the 162 annotations analysed that passed quality control across the 
11 factors examined (the factors from the five-factor factor model and 
the p-factor and residuals of the five factors from the p-factor model) 
of P < 2.81 × 10−5.

Multivariate GWAS. The sumstats function in genomic SEM was 
used to align SNP effects across traits to the same reference allele and 
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standardize the effects and their corresponding s.e. values relative to 
the total variance in the predicted phenotype. The s.e. values were ad-
ditionally corrected for uncontrolled confounds by taking the product 
of s.e. values and the LDSC univariate intercept when this value was >1. 
After removing 136 SNPs that produced highly non-positive definite 
matrices when combined with the genetic covariance matrix, the final 
listwise deleted set consisted of 2,795,800 SNPs present across all 14 dis-
orders. The userGWAS function was used to estimate the multivariate 
GWAS for SNP effects on the five factors from the five-factor model and 
the p-factor. We used a significance threshold of P < 8.33 × 10−9, reflect-
ing the standard genome-wide threshold of 5 × 10−8 with a Bonferroni 
correction for the six factors. As a quality-control check, we confirmed 
that the attenuation ratio32 was near 0 for all factors (Supplementary 
Table 17), suggesting that the factor signal is not due to uncontrolled 
confounds (such as population stratification).

The QSNP heterogeneity metric is a χ2-distributed test statistic pro-
duced through a nested-model comparison of a common pathway 
model, in which the SNP predicts a latent factor, to an independent 
pathways model, where the SNP directly predicts the factor indicators. 
Factor-specific QSNP estimates for the five-factor model were estimated 
using five independent pathways models that consisted of the SNP 
predicting both the indicators for one factor and the remaining four 
factors. For the p-factor model, the SNP predicted the five, first-order 
factors to obtain QSNP estimates for the second-order, p-factor.

Cross-ancestry analyses
We applied the cross-ancestry Popcorn33 method to estimate genetic 
impact correlation (ρgi metric) across EUR-like, EAS-like and AFR-like 
genetic ancestry groups. Six disorders were included in the analysis, 
including EAS-like summary statistics for MD and SCZ and AFR-like 
summary statistics for OUD, AUD, PTSD and CUD. The reference panel 
for the EAS dataset was based on 504 individuals from EAS population 
of the 1000 Genomes Phase3 data78. For AFR-like genetic ancestry, we 
performed the Popcorn analysis using three alternative references from 
1000 Genomes Phase3 data: (1) the African Ancestry in the southwest 
United States subgroup (n = 61); (2) the African population (n = 661); 
and (3) a reference panel created to capture the admixed ancestral back-
ground of some AFR-like individuals reflecting the combination across 
the EUR-like and AFR-like sample (n = 1,164). Cross-ancestry results 
and within-ancestry LDSC results for the AFR-like and EAS-like popu-
lations are reported in Supplementary Table 4. We acknowledge that 
using LDSC with admixed ancestry may violate its assumptions; thus,  
our results for AFR-like ancestry should be interpreted with caution. 
With this in mind, we performed LDSC for AFR-like datasets using  
two different LD reference panels for AFR-like ancestry or admixed 
American ancestry from Pan UK Biobank to assess their impact on 
results (Supplementary Table 4). The results in Extended Data Table 1 
report liability-scale heritabilities for AFR-like datasets using the 
admixed LD scores, as these produced more sensible results.

MiXeR
MiXeR (v.1.3) was applied using the procedure outlined in the original 
publication6. We performed additional simulations to evaluate appro-
priate threshold for inclusion of a GWAS study in cross-trait MiXeR 
analysis. In previous simulations, we demonstrated that MiXeR cannot 
produce reliable estimates for analyses using low-powered input79. 
Specifically, as statistical power increases, the Akaike information 
criterion (AIC) differences indicate that MiXeR-modelled estimates 
become increasingly more distinguishable from the minimum and 
maximum overlap, corresponding to the increasing precision of MiXeR 
estimates. This demonstrates that AIC differences are sensitive to the 
input power of the summary statistics and can be used to support the 
reliability of MiXeR estimates. On the basis of these previous simula-
tions, psychiatric disorders were brought forward for cross-trait MiXeR 
analysis when the product of NEff and MiXeR hSNP

2  estimates were 

>12,000, where this cut point reflects the product of NEff ≥ 100,000 
and h ≥ 0.12SNP

2 . As a result, we excluded OUD, TS, NIC, OCD, ASD and 
CUD. As AN was very close to this threshold and had a high AIC in uni-
variate analysis, it was brought forward for cross-trait analyses along 
with the seven remaining psychiatric disorders. For the NIC summary 
statistics, we excluded two loci defined as a 2 Mb window around either 
the CHRNA3–CHRNA5–CHRNB4 gene cluster or the CHRNA4 gene, 
which is known to have such a large effect on the phenotype that it 
would skew results. We note that, for PTSD, ANX and MD, the rgs were 
so high that there was little room for additional overlap beyond cor-
relation, given MiXeR’s modelling assumptions. Specifically, the range 
in size of the putative shared component is too small to allow for an 
accurate model fit in this situation, as demonstrated by the range on 
the respective x axes (Supplementary Fig. 7). There is also a consider-
able uncertainty of polygenicity estimates for PTSD and ANX. Thus, 
cross-trait MiXeR results for PTSD, ANX and MD should be interpreted 
with caution.

LAVA
Local rg analyses were conducted using LAVA v.0.1.035. To avoid evalu-
ating local rgs in regions in which there is a low amount of genetic signal 
(which could lead to unstable or uninterpretable estimates) for all 
phenotype pairs and loci separately, we used the univariate test in LAVA 
as a filtering step, computing bivariate local rgs only in loci where both 
analysed phenotypes have a hSNP

2  significant at P < 4.6 × 10−5 = 0.05/1,093 
(where 1,093 represents the total number of analysed loci). Given this 
filtering step, we performed 24,273 local rg tests across all loci and 
phenotype pairs, resulting in a Bonferroni corrected P value threshold 
of P < 2.1 × 10−6 = 0.05/24,273 for the bivariate, local rg analyses.

Genomic loci used for the regional rg analyses were defined by seg-
menting the genome into approximately equal-sized, semi-independent 
blocks using the LAVA partitioning algorithm (https://github.com/cad-
eleeuw/lava-partitioning). This algorithm works by iteratively splitting 
the chromosomes into smaller chunks, creating break points at regions 
where the LD between SNPs is the lowest (see the program manual for 
more details). To achieve a balance between block size and correlations 
between adjacent blocks, we ran the algorithm with the default param-
eters, changing only the minimum size requirement (in the number of 
SNPs) to 5,000, based on the 1,000 genomes data. Sample overlap was 
accounted for by obtaining the estimated intercepts from bivariate 
LDSC and providing these to LAVA.

CC-GWAS
CC-GWAS43 was applied to identify loci with different allele frequencies 
across cases of different disorders, contrasting cases one disorder pair 
at a time. CC-GWAS is based on estimating a weighted difference of the 
CC-GWAS results of the disorders considered, thereby avoiding the 
necessity to match cases across disorders at individual level. CC-GWAS 
combines two components. The first component (CC-GWASOLS) opti-
mizes power and protects against type I error rate at null–null SNPs 
(SNPs that affect neither of both disorders), based on analytical expecta-
tions of genetic differences between cases and controls of both diseases. 
The second component (CC-GWASExact) controls type I error rate at 
‘stress test’ SNPs (SNPs affecting both disorders resulting in no allele 
frequency difference across cases of both disorders). A SNP is signifi-
cantly associated with case–case status when the P value of the OLS 
component reaches genome-wide significance and when the P value of 
the exact-component is <10−4 (there is an upper bound on the number 
of stress test SNPs as these are causal SNPs). Importantly, CC-GWAS 
also filters false-positive associations that may arise due to (subtle) 
differential tagging of a stress test SNP in the respective CC-GWAS, 
which are present even in within-ancestry analysis43. CC-GWAS excludes 
analyses of any disorder pair with an rg > 0.8 because these have a small 
genetic distance between cases with increased risk of type-I error at 
stress test SNPs.

https://github.com/cadeleeuw/lava-partitioning
https://github.com/cadeleeuw/lava-partitioning


Locus definition and cross-locus overlap
The same locus definition (also referred to as a hit in the main text) was 
used for CC-GWAS and genomic SEM. Significant loci were identified 
using the clumping functionality in PLINK v.1.9 with an r2 threshold of 
0.1 and a 3,000 kb window. Physically proximal loci (including when 
comparing loci both within and across factors from genomic SEM and 
for CC-GWAS and univariate GWAS results), were additionally collapsed 
into a single locus when the locus windows were within 100 kb of one 
another on either side. For the univariate results, we use the same locus 
definition applied to the complete GWAS summary statistics for each 
disorder (that is, without our quality-control filters applied), along 
with a more liberal genome-wide significance threshold of P < 5 × 10−8 
without a Bonferroni correction. These more liberal quality-control 
and significance thresholds were used for univariate loci to benchmark 
whether genomic SEM and CC-GWAS loci could be considered strictly 
novel. The 1000 Genomes Phase 3 reference files78 were used for LD 
pruning for each respective genetic ancestry group (that is, EUR-like, 
EAS-like, AFR-like).

Functional annotation
To predict the target genes of the variants (Supplementary Fig. 17), 
we first expanded the variants by including any variants within the 
LD block (r2 > 0.6) based on the EUR population using LDProxy from 
the LDlink R package80. We began by curating the genes of which the 
promoters (±500 bp from the transcription start site) or exons overlap 
with the variants of interest. Conversely, to map target genes that are 
not near the variants, we first filtered the variants for those localized 
in either human fetal brain open-chromatin regions60 or human adult 
brain H3K27ac ChIP–seq regions44, both of which indicate enhancer 
activity, but during different stages of brain development. Next, we 
assigned target genes to each filtered variant using eQTL44,45 or HiC 
loops44,46 generated from samples from the corresponding stages. 
We also assigned variants present in promoter or exonic regions to 
the corresponding genes (Supplementary Fig. 17). Finally, we filtered 
all of the target genes for those expressed (RNA-seq count > 0) in the 
corresponding tissues. In this way, we obtained 715 and 572 target 
genes in fetal and adult brains, respectively (Supplementary Tables 40 
and 41). Notably, there is a prominent overlap between the two sets 
of genes, which is a result of the shared, positional mapping of genes 
to promoters or exons (Supplementary Fig. 17). Both the fetal and 
adult target genes were enriched in GO terms related to neuron or 
brain development, suggesting the biological relevance of the genetic 
variants.

To plot the temporal expression trends of the predicted target genes, 
we used gene expression datasets from the BrainSpan. We plotted 
the averaged gene expression (reads per million kb) of the selected 
genes over all samples collected from the cortex at the available stages 
of development, then generated a smoothened curve with the loess 
method. We performed GO enrichment analysis using the ToppGene 
suite36. We filtered the enriched terms by containing at least 10% of 
the input list of genes, then displayed up to top 5 terms by adjusted  
P values under the indicated category.

EWCE52 was used to assess the cell type enrichment of target genes 
for the variants using a size-biased averaging method. This method 
uses single-cell datasets to compute the average expression of a set 
of genes (in this case, genes assigned to variants for each factor) and 
compares this to the average expression levels for 100,000 permuted 
gene lists of the same size that are randomly sampled from a back-
ground set of genes. Annotations were taken from publicly avail-
able datasets53–57, but simplified to provide cell-type-level instead of 
cluster-level enrichments. For example, several upper-layer clusters 
in the dataset of ref. 57 were combined into ‘ExcNeu superficial’ and 
so on. For the ref. 56 dataset, EWCE objects were processed for each 
brain region separately. This included the hippocampal formation, 

cortex, cerebral nuclei (dissections including basal nuclei, amygda-
loid complex, basal forebrain, claustrum), midbrain (including tissues 
from thalamic complex, hypothalamus, and midbrain) and hindbrain 
(including tissues from spinal cord, pons, myelencephalon and cer-
ebellum) and non-neuronal cells across regions. For superclusters 
that were present in multiple regions, enrichment was tested only for 
regions with the highest abundance of that supercluster (for exam-
ple, MGE interneuron supercluster is most abundant in cortex, so this 
cell type was dropped from enrichment analyses in the midbrain) to 
prevent excess multiple comparisons. P values were FDR-corrected 
based on the number of cell types × gene lists within brain region and  
dataset.

MAGMA gene-set enrichment analyses were performed using the 
MAGMA.Celltyping package in R81. Rather than considering only the 
top associated genes, as done in EWCE, MAGMA relies on the genome-
wide signals to competitively evaluate enrichment through linear 
regression48. We used the European subset of the 1000 Genomes78 as 
LD reference data, and mapped SNPs to genes based on their genomic 
location (GRCh37/hg19). To allow the inclusion of nearby regulatory 
variants, we considered all SNPs within a 35 kb upstream and 10 kb 
downstream window of the gene transcription region. As signed effect-
size estimates are not available for the QSNP results, these analyses were 
restricted to the factors. The FDR corrected P values from MAGMA and 
EWCE were averaged together to produce the results reported in the 
main text (but see Supplementary Tables 48 and 49 for P values from 
the individual methods).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are all publicly available 
or can be requested for access. Specific download links for various data-
sets are directly below. Psychiatric disorder GWAS summary statistics 
for data from the PGC can be downloaded or requested online (https://
www.med.unc.edu/pgc/download-results/). Links to the LD scores and 
reference panel data for GenomicSEM analyses can be found at GitHub 
(https://github.com/GenomicSEM/GenomicSEM/wiki). Links to the 
BaselineLD v.2.2 annotations can be found online (https://data.broa-
dinstitute.org/alkesgroup/LDSCORE). Gene expression datasets from 
Brainspan can be found online (https://brainspan.org/static/download.
html). Multivariate GWAS summary statistics for the latent psychiatric 
factors in GenomicSEM, including the sensitivity GWAS results, are 
available online (https://www.med.unc.edu/pgc/download-results/).

Code availability
Genomic SEM analyses were implemented using publicly available 
code (v.0.5.0, https://github.com/GenomicSEM/GenomicSEM). Facta-
nal was conducted using publicly available code within the stats R 
package (v.3.6.2, https://www.rdocumentation.org/packages/stats/
versions/3.6.2). MiXeR was conducted using publicly available code 
(v.1.3; https://github.com/precimed/mixer). LAVA was conducted using 
publicly available code (v.0.1.0, https://github.com/josefin-werme/
LAVA). CC-GWAS was conducted using publicly available code (v.0.1.0, 
https://github.com/wouterpeyrot/CCGWAS). LDlink was conducted 
using publicly available code (v.1.4.0, https://cran.r-project.org/web/
packages/LDlinkR/vignettes/LDlinkR.html). ToppGene suite was con-
ducted using publicly available code (v.0.1.0, https://toppgene.cchmc.
org/). EWCE was conducted using publicly available code (v.1.16.0, 
https://nathanskene.github.io/EWCE/). MAGMA was conducted using 
publicly available code (v.2.0.15, https://neurogenomics.github.io/
MAGMA_Celltyping/index.html).
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Extended Data Fig. 1 | Univariate MiXeR Results. Power curves estimating the 
sample size of a GWAS study are needed to saturate the yield of genome-wide 
significant loci. The legend shows the current effective sample size of today’s 
GWAS, followed by the projected effective sample size needed for the GWAS 
yield to saturate.
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Extended Data Fig. 2 | External trait genetic correlations: Comparison across 
psychiatric factors. Bar graphs depict genetic correlations with the 31 complex 
traits for the five psychiatric factors from the correlated factors model and the 
second-order, p-factor from the hierarchical model. Panels are separated by the 
different groupings of traits (e.g., cognitive; socioeconomic). Bars depicted with 
a dashed outline were significant at a Bonferroni-corrected threshold for the 
QTrait heterogeneity metric that flags traits whose patterns of genetic correlations 
from LDSC do not conform to those implied by the factor model. Error bars are 
+/− 1.96 SE that are centred around the point estimate of the genetic correlations. 
Bar depicted with a * reflect values that were significant at a Bonferroni corrected 
threshold for multiple comparisons, that were also not significant at this same 

Bonferroni corrected threshold for QTrait. This is with exception of the p-factor, 
which is depicted with a ‘*’ even if it is significant for the QTrait, as long as that 
same trait was significantly correlated with the majority (at least three) of the 
five other factors. The two-sided P-values used to evaluate significance were 
derived from the Z-statistics, calculated as the point estimate of the genetic 
correlation divided by its standard error. Correlations are ordered according to 
the point estimate for the p-factor. The implied sample size for the psychiatric 
factors was: Compulsive (n̂ = 54,100); Schizophrenia/Bipolar (n̂ = 127,202); 
Neurodevelopmental (n̂  = 84,760); Internalizing (n̂ = 1,637,337); Substance Use 
(n̂ = 313,395); p-factor (n̂ = 2,168,621). See Suppl. Table 12 for sample sizes for 
the external traits and Suppl. Table 13 for exact P-values.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | External trait genetic correlations: Comparison 
within factors. Bar graphs depict genetic correlations with the 31 complex 
traits that are ordered by magnitude within each factor for the five psychiatric 
factors from the correlated factors model and the second-order, p-factor from 
the hierarchical model. Bars depicted with a dashed outline for the QTrait 
heterogeneity metric. Bar depicted with a * reflect values that were significant 
at a Bonferroni corrected threshold for multiple comparisons, that were also 
not significant at this same Bonferroni corrected threshold for QTrait. This is with 
exception of the p-factor, which is depicted with a ‘*’ even if it is significant for 
the QTrait, as long as that same trait was significantly correlated with the majority 

(at least three) of the five other factors. The two-sided P-values used to evaluate 
significance were derived from the Z-statistics, calculated as the point estimate 
of the genetic correlation divided by its standard error. Error bars are +/− 1.96 
SE that are centred around the point estimate of the genetic correlations. The 
implied sample size for the psychiatric factors was: Compulsive (n̂ = 54,100); 
Schizophrenia/Bipolar (n̂ = 127,202); Neurodevelopmental (n̂  = 84,760); 
Internalizing (n̂ = 1,637,337); Substance Use (n̂ = 313,395); p-factor (n̂ = 2,168,621). 
See Suppl. Table 12 for sample sizes for the external traits and Suppl. Table 13 for 
exact P-values.



Extended Data Fig. 4 | Stratified Genomic SEM results. Bar graph depicts the 
enrichment results for different brain cell types, protein-truncating variant 
intolerant (PI) genes, and the intersection across PI genes and brain cell types. 
Results are shown only for the SB, Internalizing, and p-factor due to the limited 
signal for the other factors. Enrichment for height is depicted in purple to 
benchmark results and evaluate specificity in signal for the psychiatric factors 
relative to another human complex trait. Error bars are +/- 1.96 SE that are 
centred around the enrichment point estimate. Enrichment estimates that 

were significant at a strict Bonferroni corrected threshold for multiple 
comparisons are shown with a *. The one-sided P-values used to evaluate 
significance were derived from the Z-statistics, calculated as the enrichment 
point estimate divided by its standard error. Exact P-values are reported in Suppl. 
Table 50. The implied sample size for the psychiatric factors was: Compulsive 
(n̂ = 54,100); Schizophrenia/Bipolar (n̂ = 127,202); Neurodevelopmental 
(n̂  = 84,760); Internalizing (n̂ = 1,637,337); Substance Use (n̂ = 313,395); p-factor 
(n̂ = 2,168,621).
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Extended Data Table 1 | Summary of Psychiatric Disorder Datasets

The table is ordered with respect to the liability scale heritabilities (within each genetic ancestry). The Neffective column reports the sum of effective sample sizes across contributing cohorts. Nicotine 
dependence includes a single value for the sample size columns as this was the one continuous measure, defined using the Fagerström Test for Nicotine Dependence. The reported population 
prevalences were taken from the corresponding univariate publication when possible and were used for liability scale conversions (possible scale = 0–100%). The numbers in parentheses in the 
liability scale heritability column reflect the corresponding standard errors. The GWAS loci column reports the number of independent significant hits. A genome-wide significance threshold 
of P < 5 × 10−8 was employed to correct for multiple statistical comparisons, and significance was evaluated using two-sided P values obtained from Z-statistics, which reflected the estimated 
univariate GWAS beta over its estimated standard error. Results are shown for: Tourette’s Syndrome18, Schizophrenia17,30, Cannabis Use Disorder26, Bipolar Disorder13, Attention-Deficit/Hyperactivity 
Disorder15, Anorexia Nervosa14, Obsessive Compulsive Disorder19, Alcohol Use Disorder21,31, Autism Spectrum Disorder16, Anxiety Disorders22, Nicotine Dependence24, Major Depression20,29, Opioid 
Use Disorder25, and Post-traumatic Stress Disorder23.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection. 

Data analysis Genomic SEM analyses were implemented using the publicly available code here for v0.5.0: https://github.com/GenomicSEM/GenomicSEM 
Factanal was conducted using publicly available code here within the stats R package for v3.6.2: 
https://www.rdocumentation.org/packages/stats/versions/3.6.2 
MiXeR was conducted using publicly available code here for v1.3: https://github.com/precimed/mixer 
LAVA was conducted using publicly available code here for v.0.1.0:  
https://github.com/josefin-werme/LAVA 
CC-GWAS was conducted using publicly available code here for v0.1.0: https://github.com/wouterpeyrot/CCGWAS 
LDlink was conducted using publicly available code here for v1.4.0: 
https://cran.r-project.org/web/packages/LDlinkR/vignettes/LDlinkR.html 
ToppGene suite was conducted using publicly available code here for v0.1.0:  
https://toppgene.cchmc.org/ 
EWCE was conducted using publicly available code here for v.1.16.0: 
https://nathanskene.github.io/EWCE/ 
MAGMA was conducted using publicly available code here for v.2.0.15: 
https://neurogenomics.github.io/MAGMA_Celltyping/index.html

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Psychiatric disorder GWAS summary statistics for data from the PGC can be downloaded or requested here: 
https://www.med.unc.edu/pgc/download-results/ 
Links to the LD-scores and reference panel data for GenomicSEM analyses can be found here: https://github.com/GenomicSEM/GenomicSEM/wiki 
Links to the BaselineLD v2.2 annotations can be found here: 
https://data.broadinstitute.org/alkesgroup/LDSCORE 
Gene expression datasets from Brainspan can be found here: 
https://brainspan.org/static/download.html 
  
Multivariate GWAS summary statistics for the latent psychiatric factors in GenomicSEM, including the sensitivity GWAS results, are available at: 
https://www.med.unc.edu/pgc/download-results/

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Biological sex (as determined by the sex chromosomes) was used as a covariate in the original GWAS analyses for all included 
traits. All included GWAS summary statistics included both male and female subjects, with the exact split across males and 
females provided in the original papers describing this univariate GWAS data.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

This study includes GWAS summary statistics for genetic ancestry groups that can be approximately described, based on 
genetic similarity to global reference panels, as reflecting European-like, East Asian-like, and African/African American-like 
genetic ancestries. The sample sizes are separately reported for each of these genetic ancestry groups in Extended Data 
Table 1.

Population characteristics In order to achieve adequate power for GWAS analyses, the psychiatric disorders that are used as the primary data input in 
this paper include data from multiple cohorts, each with different population characteristics. The supplementary materials of 
the corresponding univariate GWAS papers include information on the different cohorts that went into their analyses. Our 
current manuscript reports sample sizes (case/control) and diagnosis for each disorder. 

Recruitment As described directly above, this study was not involved in recruitment of study participants. Rather, the individual cohorts 
that made-up the univariate GWAS for psychiatric disorders employed different recruitment strategies. This recruitment 
strategies ranged from volunteer basis, population-level surveys, and convenience sampling from hospital settings. As no 
single recruitment strategy was used for a psychiatric disorder this should ideally reduce bias induced by any one form of 
recruitment. 

Ethics oversight Primary data collection was not conducted for this study. As the data was used was already collected and deidentified, ethics 
oversight was not applicable.  

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The  current study reflects the largest and most comprehensive cross-disorder psychiatric genetic analysis to-date. This study makes use of 
the largest psychiatric disorder GWAS currently available. Sample sizes for each of the included 14 disorders are provided in Table 1 of the 
main text. 

Data exclusions We employed strict quality control of the GWAS summary statistics prior to running analyses. These QC filters included removing strand 
ambiguous SNPs, restricting to SNPs with an imputation score (INFO) > 0.6 and with a minor allele frequency (MAF) > 1% when this 
information was available in the GWAS summary stats. Finally, we restrict to SNPs with a SNP-specific sum of the effective sample that is > 
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50% of the total sum of the effective sample or, when this SNP-specific information was not available, to SNPs for which > 50% of the cohorts 
contributed information, as indexed by the direction column in the GWAS summary stats. The MHC region was excluded from all summary 
statistics prior to the analysis.

Replication We examined how genetic correlations in European-like genetic ancestry individuals compared to results from East Asian-like and African/
African American-like genetic ancestry individuals. The genetic correlation (rg) between major depression and schizophrenia in East Asian-like 
participants (rg = 0.45; SE = 0.09) was double that observed in European-like participants (rg = 0.22; SE = 0.04), though this discrepancy was 
previously shown to be driven by a single cohort of severe and recurrent major depression. Genetic correlations across disorders using 
African-like genetic ancestry GWAS did not produce any significant results due to lower power reflective of smaller participants sample sizes in 
these GWAS.  Genetic correlations across genetic ancestry groups within a disorder were generally underpowered, but included a strong East 
Asian-like and European-like genetic correlation for schizophrenia.  
 
Functional analyses using MAGMA, Expression-Weighted Cell Type Enrichment, and Stratified Genomic SEM replicated certain key findings, 
including the enrichment of excitatory neuron pathways for the Schizophrenia/Bipolar factor and oligodendrocyte biology for the Internalizing 
factor.  
 
We also evaluated replication of results when utilizing more strictly ascertained samples of psychiatric cases. We find that the general pattern 
of results replicates for this ascertainment sensitivity analysis, with similar patterns of genetic correlations across disorders, multivariate 
genetic architecture, and genetic variants associated with the psychiatric factors.

Randomization As this is a study of genetic risk for psychiatric disorders, and not a study of treatment effects as might be evaluated in a randomized control 
trial, randomization is not relevant as a study consideration. This is because participants cannot be randomized by the experimenter to have a 
psychiatric disorder or not. 

Blinding Blinding does not apply to this type of study design as the study participants are not randomly assigned to have a psychiatric disorder or not. 
In addition, there is no bias that can be introduced by the scientists running the genetic association analyses being aware of their psychiatric 
case status. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Dual use research of concern
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Methods
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MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.
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